References

- Allen, F. H., Kennard, O. & Taylor, R. (1993). Acc. Chem. Res. 16, 146–153.
- Alyea, E. C., Ferguson, G., Gallagher, J. & Song, S.-Q. (1994). Acta Cryst. C50, 1084–1087.
- Alyea, E. C., Ferguson, G. & Song, S.-Q. (1995). Acta Cryst. C51, 2238-2242.
- Alyea, E. C., Ferguson, G. & Zwikker, M. (1994). Acta Cryst. C50, 676-678.
- Alyea, E. C. & Song, S.-Q. (1995a). Inorg. Chem. 34, 3864-3873.
- Alyea, E. C. & Song, S.-Q. (1995b). In preparation.
- Bradley, F. C., Wong, E. H., Gabe, E. J. & Lee, F. L. (1986). Inorg. Chim. Acta, 120, L21–L22.
- Enraf-Nonius (1992). CAD-4/PC Software. Version 1.1. Enraf-Nonius, Delft, The Netherlands.
- Ferguson, G., Roberts, P. J., Alyea, E. C. & Khan, M. A. (1978). *Inorg. Chem.* 17, 2965–2967.
- Gabe, E. J., Le Page, Y., Charland, J.-P., Lee, F. L. & White, P. S. (1989). J. Appl. Cryst. 22, 384–387.
- Gray, G. M. & Zhang, Y. (1993). J. Crystallogr. Spectrosc. Res. 23, 711–717.
- Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
- Mark, V. & Van Wazer, J. R. (1964). J. Org. Chem. 29, 1006-1008.
- North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
- Sheldrick, G. M. (1985). SHELXS86. Program for the Solution of Crystal Structures. University of Göttingen, Germany.
- Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.
- Song, S.-Q. (1994). PhD thesis, University of Guelph, Canada.
- Spek, A. L. (1994a). PLATON. Program for the Automated Analysis of Molecular Geometry. Version of July 1994. University of Utrecht, The Netherlands.
- Spek, A. L. (1994b). PLUTON. Program for the Display and Analysis of Crystal and Molecular Structures. Version of July 1994. University of Utrecht, The Netherlands.
- Tolman, C. A. (1977). Chem. Rev. 77, 313-348.
- Ueng, C.-H. & Hwang, G.-Y. (1991). J. Chem. Soc. Dalton Trans. pp. 1643–1645.

Acta Cryst. (1996). C52, 69-72

A Novel Octanuclear Mixed-Metal Cluster: $Na_2[Cr_{0.5}Fe_{0.5}Mo_3O_4(O_2CEt)_8]_2$

HUANG LIU, LI XU, JINSHUN HUANG,* WENDAN CHEN AND QIANER ZHANG

Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, People's Republic of China

(Received 14 October 1993; accepted 28 February 1995)

Abstract

The structure of disodium bis [μ -oxo-tri- μ_3 -oxopentakis(μ -propionato- κO : $\kappa O'$)tris(propionato- κO)-0.5chromium-0.5-irontrimolybdenum](3 *Mo*—*Mo*), Na₂-[Cr_{0.5}Fe_{0.5}Mo₃O₄(C₃H₅O₂)₈]₂, consists of a centrosymmetric cluster anion, [(EtCO₂)₈Mo₃O₄CrFeO₄Mo₃(O₂C- $Et_{8}]^{2-}$, in which two $Mo_{3}O_{4}$ units are joined by the Fe and Cr atoms to complete a circular $[Mo_{3}O_{4}CrFeO_{4}Mo_{3}]^{14+}$ species. Each Na atom is coordinated to five O atoms to form a trigonal bipyramid with an average Na—O distance of 2.32 (2) Å. The anions are connected by Na cations to form a onedimensional infinite chain structure.

Comment

Triangular trinuclear cluster species with an $[M_3O_4]^{4+}$ core (M = Mo, W) have been studied extensively (Mardon & Pernick, 1973; Murmann & Shelton, 1980). The sandwich-cubane type $[M_3S_4M'S_4Mo_3]$ and double-cubane type $[M_3S_4M'M'S_4M_3]$ species have been investigated by Shibahara, Akashi, Yamasaki & Hashimoto (1991), and Wolff, Berg, Hodgson, Frankel & Holm (1979). Here, we report a novel insoluble octanuclear mixed-metal cluster with a circular $[Mo_3O_4CrFeO_4Mo_3]^{14+}$ cation.

The black crystals of title compound, (I), were obtained from the redox reaction of $Na_2MoO_4.2H_2O$ with $Cr(CO)_6$ and $Fe(CO)_5$ in propionic anhydride. The crystals are very stable in air and difficult to dissolve in water, general organic solvents and acids.

The X-ray structure study indicates that Cr and Fe atoms are disordered in the crystal lattice. The structure of Na₂[*M*Mo₃O₄(O₂CEt)₈]₂ (*M* = 0.5Cr + 0.5Fe) consists of an octanuclear centrosymmetric anion [(EtCo₂)₈Mo₃O₄*MM*O₄Mo₃(O₂CEt)₈]²⁻, where the two [Mo₃O₄(O₂CEt)₈]⁴⁻ units are joined by two *M* atoms through four μ_3 -O (from μ_2 -O atoms in both the Mo₃ units) and eight bridging EtCO₂ groups as shown in Fig. 1.

Each *M* atom is coordinated by six O atoms, two from μ_3 -O atoms and four from propionate bridges. They complete regular octahedral coordination. The average *M*— μ_3 -O bond length of 1.980 (9) Å is significantly longer than the Fe— μ_3 -O length of 1.905 (5) Å found in the related cation [Fe₃O(O₂C*R*)₆*L*₃]⁺ (Blake & Fraser, 1975) or the Cr— μ_3 -O length of 1.89 Å in [Cr₃O(O₂C*R*)₆*L*₃]⁺ (Chang & Jeffrey, 1970), as a result of the Fe₃O or Cr₃O four-centre *d*–*p*–*d* π -bonding found in the latter two.

Fig. 1. ORTEPII (Johnson, 1976) view of the $[MMo_3O_4(O_2CEt)_8]_2^2$ anion, where M = 0.5Cr + 0.5Fe. Displacement ellipsoids are drawn at the 20% probability level.

The $[Mo_3O_4(O_2CEt)_8]^{4-}$ unit is similar to other Mo_3O_4 species except for the propionate O(13)-C(17)—O(23) bridge spanning the Mo(1)—Mo(2) edge. Each Mo atom is bonded to six O atoms: three bridging O atoms [one μ_2 -O and two μ_3 -O atoms for Mo(2) and Mo(3), three μ_3 -O atoms for Mo(1)], one O_t (terminal EtCO₂) and two O_{br} (bridging EtCO₂) atoms, forming a distorted octahedron. Bond lengths and angles of the Mo₃ unit in the octanuclear anion are similar to those in the discrete Mo₃O₄ species reported previously, except that Mo— μ_3 -O (from μ_2 -O atoms in both Mo₃ units) has an average bond length of 1.948 (9) Å, which is significantly longer than the corresponding Mo- μ_2 -O bond lengths reported previously (e.g. 1.908 (7) Å; Benory, Bino, Gibson, Cotton & Dori, 1985). The average Mo-Mo distance [2.519(3)Å] is comparable with those in $[Mo_3O_4(edta)_{3/2}]_2^{4-}$ [2.51 (1) Å; Bino, Cotton & Dori, 1979], suggesting that the formal oxidation states of the Mo atoms should be IV.

M(1), O(2), Mo(1) and O(3) form a nearly planar $Mo_2M_2O_4$ eight-membered ring about the symmetry centre. The average distance of the eight atoms from the least-squares plane is 0.30 Å. Each of the M metal atoms is also bonded to two bridging O atoms of each of the Mo₃O₄ units, thus forming four nearly planar MMo_2O units, *i.e.* the M(1)Mo(1)Mo(2)O(2) and M(1')Mo(1)Mo(3)O(3) units, in which the average M— Mo distance is 3.64 (9) Å, attesting to the absence of *M*—Mo bonding.

Each Na atom is five-coordinate. The coordination polyhedron is a trigonal bipyramid, consisting of one capping O, three O_t atoms from one anion and one O_t atom from another. The cluster anions are connected by Na atoms to constitute a chain structure characteristic of Na₂O₂ four-membered cycles about the unit-cell origin. The short Na-O distances [2.32(2)Å] and the chain structure may be responsible for the insolubility of the compound.

Experimental

Preparation of the title compound was carried out in air. A mixture of Na₂MoO₄.2H₂O and Cr(CO)₆ was heated and dissolved in propionic anhydride. Fe(CO)₅ was added to the solution which was kept heated at 393 K for 3 d. After cooling, well formed black crystals of the title compound were obtained. Analysis: calculated for Na2CrFeMo6O40C48H80 Na 2.27, Cr 2.57, Fe 2.75, Mo 28.42, C 28.46, H 3.95%; found Na 2.16, Cr 2.70, Fe 2.80, Mo 27.1, C 25.93, H 3.36%.

Crystal data

Na₂[Cr_{0.5}Fe_{0.5}Mo₃O₄-Mo $K\alpha$ radiation $\lambda = 0.7107 \text{ Å}$ $(C_3H_5O_2)_8]_2$ $M_r = 2026.6$ Cell parameters from 20 Triclinic reflections $\theta = 5.29 - 10.48^{\circ}$ ΡĪ a = 12.981(5) Å $\mu = 1.39 \text{ mm}^{-1}$ b = 14.021 (4) Å T = 296 KPlate c = 12.356(6) Å $\alpha = 109.81 (4)^{\circ}$ $0.40 \times 0.20 \times 0.10 \text{ mm}$ $\beta = 117.51 (3)^{\circ}$ Black $\gamma = 90.36 (4)^{\circ}$ $V = 1840(2) \text{ Å}^3$ Z = 1 $D_x = 1.83 \text{ Mg m}^{-3}$ Data collection Rigaku AFC-5R diffractom-3118 observed reflections eter $[I > 3\sigma(I)]$ ω -2 θ scans $\theta_{\rm max} = 25^{\circ}$ $h = 0 \rightarrow 15$ Absorption correction: $k = -16 \rightarrow 16$ refined from ΔF $l = -14 \rightarrow 13$ (DIFABS; Walker & Stuart, 1983) 3 standard reflections $T_{\min} = 0.249, T_{\max} =$ monitored every 250 0.870 reflections 6811 measured reflections intensity decay: 0.8% 6811 independent reflections

Refinement

Refinement on F	$(\Delta/\sigma)_{\rm max} = 0.04$
R = 0.056	$\Delta \rho_{\rm max} = 0.98 (2) {\rm e} {\rm \AA}^{-3}$
wR = 0.064	$\Delta \rho_{\rm min} = -0.73 (2) {\rm e} {\rm \AA}^{-3}$
S = 1.09	Extinction correction: none
3118 reflections	Atomic scattering factors
443 parameters	from International Tables
H atoms not located	for X-ray Crystallography
$w = 1/[\sigma^2(F_o) + (0.02F_o)^2]$	(1974, Vol. IV)
+ 1.00]	

Table 1. Fractional atomic coordinates and equivalent isotropic displacement parameters $(Å^2)$

$$B_{\rm eq} = (4/3) \sum_i \sum_j \beta_{ij} \mathbf{a}_i \cdot \mathbf{a}_j.$$

	x	у	Z	B_{eq}
Mo(1)	0.95285 (9)	0.35618 (8)	0.28112 (9)	2.16 (2)
Mo(2)	1.12590 (9)	0.27984 (8)	0.39368 (9)	2.14 (2)
Mo(3)	0.9360(1)	0.23979 (8)	0.3928 (1)	2.37 (3)

M(1)*	1.2242 (2)	0.5560(1)	0.5648 (2)	1.98 (4)
O	0.9680 (7)	0.2073 (6)	0.2375 (7)	2.5 (2)
O(2)	1.1146 (7)	0.4249 (6)	0.4244 (7)	2.5 (2)
O(3)	0.8999 (7)	0.3760 (6)	0.4084 (7)	2.4 (2)
O(4)	1.0969 (7)	0.2829 (6)	0.5334 (7)	2.5 (2)
0(11)	0.7937 (8)	0.3131 (7)	0.1205 (8)	3.8 (3)
O(12)	0.9180 (7)	0.5020 (7)	0.2805 (7)	2.8 (2)
O(13)	1.0202 (8)	0.3523 (7)	0.1521 (8)	3.5 (2)
0(14)	0.766(1)	0.1599 (9)	-0.035 (1)	5.7 (4)
O(21)	1.1774 (8)	0.1426 (7)	0.3623 (8)	3.0 (2)
O(22)	1.3098 (7)	0.3316 (7)	0.5279 (7)	2.7 (2)
O(23)	1.1778 (7)	0.2904 (7)	0.2570 (7)	3.1 (2)
O(24)	1.103(1)	0.0472 (8)	0.1471 (9)	4.9 (3)
O(31)	0.9269 (8)	0.0901 (7)	0.3685 (8)	3.7 (3)
O(32)	0.7501 (8)	0.1857 (7)	0.2600 (9)	3.8 (3)
O(33)	0.8966 (8)	0.2549 (7)	0.5451 (8)	3.4 (2)
O(34)	0.867(1)	-0.0138 (9)	0.162(1)	7.0 (4)
O(41)	1.3563 (8)	0.4919 (7)	0.5498 (8)	3.5 (2)
O(42)	0.8052 (8)	0.3903 (7)	0.5746 (8)	3.1 (2)
O(43)	0.7518 (7)	0.4981 (6)	0.2987 (7)	2.6 (2)
O(44)	0.6569 (8)	0.3166 (7)	0.2961 (9)	3.5 (3)
C(11)	0.736(1)	0.241 (1)	0.005 (1)	4.6 (5)
C(12)	0.617 (2)	0.267 (2)	-0.082 (2)	6.8 (7)
C(13)	0.545 (3)	0.183 (2)	-0.219 (2)	10(1)
C(14)	0.818(1)	0.5242 (9)	0.258 (1)	2.3 (3)
C(15)	0.769(1)	0.584 (1)	0.167 (1)	3.9 (4)
C(16)	0.652 (2)	0.613(1)	0.146 (2)	7.1 (6)
C(17)	1.114 (1)	0.319(1)	0.166 (1)	3.6 (3)
C(18)	1.142(1)	0.309(1)	0.056 (1)	6.0 (5)
C(19)	1.274 (2)	0.298 (2)	0.103 (2)	10.2 (7)
C(21)	1.155(1)	0.057 (1)	0.260(1)	3.5 (4)
C(22)	1.206 (2)	-0.030(1)	0.306 (2)	7.0 (6)
C(23)	1.331 (2)	0.002 (2)	0.421 (3)	8.9 (8)
C(24)	1.380(1)	0.407 (1)	0.551 (1)	3.2 (3)
C(25)	1.506(1)	0.396 (1)	0.583 (2)	4.8 (4)
C(26)	1.511 (2)	0.298 (2)	0.498 (2)	8.8 (8)
C(31)	0.890 (2)	0.000(1)	0.274 (1)	4.6 (5)
C(32)	0.885 (2)	-0.090 (1)	0.314 (2)	7.2 (6)
C(33)	0.783 (3)	-0.094 (2)	0.338 (3)	12.7 (9)
C(34)	0.858 (1)	0.321 (1)	0.607(1)	3.2 (3)
C(35)	0.874 (2)	0.313 (1)	0.731 (1)	6.4 (5)
C(36)	0.862 (2)	0.401 (2)	0.830 (2)	9.0 (8)
C(37)	0.660(1)	0.223 (1)	0.240(1)	3.6 (4)
C(38)	0.539 (2)	0.152 (2)	0.137 (2)	6.9 (7)
C(39)	0.513 (3)	0.082 (2)	0.188 (3)	14(1)
Na(1)	0.8988 (5)	0.0612 (4)	0.0418 (5)	4.0 (2)

*M(1) = 0.5Cr + 0.5Fe.

Table 2. Selected geometric parameters (\mathring{A}, \circ)

Mo(1)—Mo(2)	2.506 (2)	Mo(3)O(3)	1.937 (9)
Mo(1)—Mo(3)	2.533 (2)	Mo(3)O(4)	1.915 (9)
Mo(2)—Mo(3)	2.519 (2)	Mo(3)O(31)	2.01 (1)
Mo(1)-O(1)	2.007 (9)	Mo(3)O(32)	2.14 (2)
Mo(1)-O(2)	1.964 (9)	Mo(3)O(33)	2.11 (2)
Mo(1)O(3)	1.931 (9)	M(1)O(2)	1.984 (9)
Mo(1)O(11)	1.99 (2)	M(1)O(3')	1.977 (9)
Mo(1)-O(12)	2.099 (9)	M(1)O(41)	2.00 (2)
Mo(1)O(13)	2.14 (2)	M(1)—O(42')	1.99 (2)
Mo(2)O(1)	1.987 (9)	M(1)O(43')	1.97 (1)
Mo(2)—O(2)	1.958 (9)	M(1)—O(44')	1.99 (1)
Mo(2)O(4)	1.917 (9)	O(1)—Na(1)	2.34 (2)
Mo(2)-O(21)	2.01 (1)	O(14)—Na(1)	2.28 (1)
Mo(2)—O(22)	2.12(1)	O(24)—Na(1)	2.39 (1)
Mo(2)-O(23)	2.13(1)	O(24')Na(1)	2.30(1)
Mo(3)O(1)	2.05 (1)	O(34)—Na(1)	2.26 (2)
Mo(1)-Mo(2)-Mo(3)	60.55 (5)	Mo(1)-Mo(3)-Mo(2)	59.47 (5)
Mo(2)—Mo(1)—O(1)	50.8 (3)	Mo(2)—Mo(1)—O(2)	50.2 (3)
Mo(2)-Mo(1)-O(3)	94.9 (3)	Mo(2)—Mo(1)—O(11)	139.8 (4)
Mo(2)-Mo(1)-O(12)	138.1 (3)	Mo(2)—Mo(1)—O(13)	86.2 (3)
Mo(3)—Mo(1)—O(1)	52.2 (3)	Mo(3)—Mo(1)—O(2)	92.2 (3)
Mo(3)-Mo(1)-O(3)	49.2 (3)	Mo(3)—Mo(1)—O(11)	101.7 (3)
Mo(3)-Mo(1)-O(12)	137.5 (3)	Mo(3)—Mo(1)—O(13)	135.9 (3)
O(1)Mo(1)O(2)	100.7 (4)	O(1)Mo(1)O(3)	100.8 (4)
O(1)-Mo(1)-O(11)	89.3 (5)	O(1)—Mo(1)—O(12)	167.1 (4)
O(1)Mo(1)O(13)	84.9 (4)	O(2)-Mo(1)-O(3)	90.6 (4)
O(2)—Mo(1)—O(11)	165.9 (4)	O(2)—Mo(1)—O(12)	88.1 (4)

O(2) - Mo(1) - O(13)	85.4 (4)	O(3)—Mo(1)—O(11)	97.3 (4)
O(3) - Mo(1) - O(12)	88.4 (4)	O(3)—Mo(1)—O(13)	173.6 (4)
O(11) - Mo(1) - O(12)	80.5 (5)	O(11)—Mo(1)—O(13)	85.8 (4)
O(12) - Mo(1) - O(13)	86.6 (4)	Mo(1)-Mo(2)-O(1)	51.6(3)
$M_0(1) - M_0(2) - O(2)$	50.4 (3)	Mo(1)-Mo(2)-O(4)	96.7 (3)
Mo(1)-Mo(2)-O(21)	138.8 (3)	Mo(1)-Mo(2)-O(22)	137.4 (3)
Mo(1)-Mo(2)-O(23)	86.3 (3)	Mo(3)—Mo(2)—O(1)	52.6 (3)
Mo(3)—Mo(2)—O(2)	92.8 (3)	Mo(3)—Mo(2)—O(4)	48.9 (3)
Mo(3)-Mo(2)-O(21)	102.7 (3)	Mo(3)—Mo(2)—O(22)	139.8 (3)
Mo(3)-Mo(2)-O(23)	137.5 (3)	O(1)—Mo(2)—O(2)	101.7 (4)
O(1)-Mo(2)-O(4)	100.3 (4)	Mo(1) - Mo(3) - O(1)	50.6 (2)
Mo(1)—Mo(3)—O(3)	49.0 (3)	Mo(1)—Mo(3)—O(4)	95.9 (3)
Mo(1)-Mo(3)-O(31)	139.8 (4)	Mo(1)—Mo(3)—O(32)	93.1 (4)
Mo(1)—Mo(3)—O(33)	135.5 (3)	Mo(2)—Mo(3)—O(1)	50.3 (3)
Mo(2)—Mo(3)—O(3)	94.4 (3)	Mo(2)—Mo(3)—O(4)	48.9 (3)
Mo(2)—Mo(3)—O(31)	101.7 (3)	Mo(2)—Mo(3)—O(32)	140.9 (3)
Mo(2)—Mo(3)—O(33)	132.9 (3)	O(1)—Mo(3)—O(3)	99.1 (4)
O(1)-Mo(3)-O(4)	98.1 (4)	O(1)—Mo(3)—O(31)	89.6 (4)
O(1)-Mo(3)-O(32)	91.1 (4)	O(1)—Mo(3)—O(33)	173.4 (4)
O(3)-Mo(3)-O(4)	97.5 (4)	O(3)—Mo(3)—O(31)	163.7 (4)
O(3)-Mo(3)-O(32)	84.9 (4)	O(3)—Mo(3)—O(33)	86.7 (4)
O(4)-Mo(3)-O(31)	94.9 (4)	O(4)—Mo(3)—O(32)	169.9 (4)
O(4)-Mo(3)-O(33)	84.2 (4)	O(31)—Mo(3)—O(32)	81.1 (4)
O(31)-Mo(3)-O(33)	84.1 (4)	O(32)—Mo(3)—O(33)	86.2 (4)
O(2) - M(1) - O(41)	87.8 (4)	O(2)—M(1)—O(42')	88.8 (4)
O(2) - M(1) - O(43')	90.3 (4)	O(2)—M(1)—O(44')	176.1 (5)
O(3') - M(1) - O(41)	176.4 (5)	O(3') - M(1) - O(42')	89.7 (4)
O(3') - M(1) - O(43')	89.0 (4)	O(3') - M(1) - O(44')	88.9 (4)
O(41) - M(1) - O(42')	92.5 (4)	O(41) - M(1) - O(43')	89.0 (5)
O(41) - M(1) - O(44')	88.3 (5)	O(42') - M(1) - O(43')	178.4 (4)
O(42') - M(1) - O(44')	91.0 (4)	O(43') - M(1) - O(44')	90.0 (5)
Mo(1) - O(1) - Na(1)	134.8 (5)	Mo(2) - O(1) - Na(1)	135.2 (5)
Mo(1) - O(2) - M(1)	147.3 (5)	Mo(2) - O(2) - M(1)	132.1 (5)
Mo(1)O(3)Mo(3)	81.8 (3)	Mo(1) - O(3) - Co(1')	133.6 (5)
Mo(3)-O(3)Co(1')	132.9 (5)	O(1) - Na(1) - O(14)	80.9 (4)
O(24)-Na(1)-O(34)	117.1 (5)	O(1)-Na(1)-O(24)	81.3 (4)
O(1)-Na(1)-O(24')	155.6 (5)	O(1)-Na(1)-O(34)	81.8 (4)
O(14)-Na-O(24)	146.7 (6)	O(14)—Na(1)—O(24)	102.3 (4)
O(14)-Na(1)-O(34)	115.3 (6)	O(24') - Na(1) - O(24)	83.6 (4)

The structure was solved by direct methods using *MUL-TAN*11/82 (Main *et al.*, 1982) and refined by full-matrix least-squares techniques with anisotropic displacement parameters for all non-H atoms. All calculations were performed on a VAX 785 computer using the *SDP* package (Frenz, 1978). Molecular graphics were obtained using *ORTEP*II (Johnson, 1976).

This research is supported by the grants from the National Science Foundation of China and Provincial Science Foundation of Fujian.

Lists of structure factors, anisotropic displacement parameters and complete geometry have been deposited with the IUCr (Reference: AB1128). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

References

Benory, E., Bino, A., Gibson, D., Cotton, F. A. & Dori, Z. (1985). Inorg. Chem. Acta, 99, 137-142.

- Bino, A., Cotton, F. A. & Dori, Z. (1979). J. Am. Chem. Soc. 101, 3842-3847.
- Blake, A. B. & Fraser, L. R. (1975). J. Chem. Soc. Dalton Trans. pp. 193-197.
- Chang, S. C. & Jeffrey, G. A. (1970). Acta Cryst. B26, 673-683.
- Frenz, B. A. (1978). The Enraf-Nonius CAD-4 SDP a Real-Time System for Concurrent X-ray Data Collection and Crystal Structure Determination. Computing in Crystallography, edited by H. Schenk, R. Olthof-Hazekamp, H. van Konigsveld & G. C. Bassi, pp. 64–71. Delft University Press.

- Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
- Main, P., Fiske, S. J., Hull, S. E., Lessinger, L., Germain, G., Declercq, J.-P. & Woolfson, M. M. (1982). MULTAN11/82. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Universities of York, England, and Louvain, Belgium.
- Mardon, M. & Pernick, A. (1973). J. Am. Chem. Soc. 95, 6871–6872.
 Murmann, R. K. & Shelton, M. E. (1980). J. Am. Chem. Soc. 102, 3984–3985.
- Shibahara, T., Akashi, H., Yamasaki, M. & Hashimoto, K. (1991). Chem. Lett. pp. 689-692.
- Walker, N. & Stuart, D. (1983). Acta Cryst. A39, 158-166.
- Wolff, T. E., Berg, J. M., Hodgson, K. V., Frankel, R. B. & Holm, R. H. (1979). J. Am. Chem. Soc. 101, 4140–4250.

Acta Cryst. (1996). C52, 72-74

Bis(acetato)bis(pyridine-2-amidoxime-N,N')nickel(II)–Ethanol (1/2)

Manfred Werner, a Joachim Berner a and Peter G. Jones b*

^aInstitut für Chemie, Pädagogische Hochschule Erfurt/ Mühlhausen, Schillerweg 59, 99974 Mühlhausen, Germany, and ^bInstitut für Analytische und Anorganische Chemie, Technische Universität Braunschweig, Postfach 3329, 38023 Braunschweig, Germany

(Received 28 April 1995; accepted 11 July 1995)

Abstract

The mononuclear complex of the title compound [alternative IUPAC name: bis(acetato-O)bis(pyridine-2-carboxamide oxime-N,N')nickel(II)–ethanol (1/2)], [Ni(C₂H₃O₂)₂(C₆H₇N₃O)₂].2C₂H₅OH, crystallizes from ethanol as a disolvate. The coordination geometry at the Ni atom is distorted octahedral, with crystallographic twofold symmetry. The pyridine-2-carboxamide oxime ligands are coordinated to the metal through the N atoms of the pyridine ring and the oxime group. The acetate ligands are monodentate. The ethanol solvate molecule is linked to the non-coordinated O atom of the acetate ligand *via* a hydrogen bond.

Comment

Amidoximes and their complexes find a wide range of applications in technology, medicine and agriculture (Nicolaides & Varella, 1992). Recent attention has centred on the members of this group which form mono- or polynuclear chelate complexes (Pearse, Raithby & Maughan, 1994; Orama, Saarinen & Korvenranta, 1994). Pyridine-2-amidoxime (py2ao) is known to form stable complexes with various metals (Sanyal, Modak & Mudi, 1983), some of which are exploited in analytical chemistry (Losada del Barrio, Abad & Vicente-Perez, 1986). However, little or no attention has been paid to coordination compounds arising from reactions of py2ao with acetates of the 3d metals in organic solvents, despite the fact that the problem could be of interest in view of a possible deprotonation of py2ao in the presence of acetate ions.

The title complex, (I) (Fig. 1), is mononuclear and the central Ni atom is located on a twofold axis $(\frac{1}{2}, y, \frac{1}{4})$. The coordination geometry is distorted octahedral, the major distortions being N3—Ni—N3(1 - x, y, $\frac{1}{2} - z$) 166.2 (2) and N3—Ni—N1 76.18 (11)°. Two mutually *cis* positions are occupied by the O2 atoms of the two monodentate acetato ligands and the two other pairs are occupied by the chelating pyridine N1 and oxime N3 atoms and their symmetry equivalents of the py2ao ligands. The N3 atoms are mutually *trans* and the N1 atoms mutually *cis*.

Electroneutrality requires that the py2ao ligand is not deprotonated during complex formation, as was confirmed by location of all H atoms. Since pyridine-2aldoxime loses a proton on complexation to nickel(II) chloride in neutral aqueous solution, we suggest that the NH_2 group of py2ao stabilizes the oxime group

Fig. 1. The title complex in the crystal (solvent omitted). Radii are arbitrary and only the asymmetric unit is numbered.